91 research outputs found

    The SCUBA-2 850 μm\mu m follow-up of WISE-selected, luminous dust-obscured quasars

    Full text link
    Hot dust-obscured galaxies (Hot DOGs) are a new population recently discovered in the \wise All-Sky survey. Multiwavelength follow-up observations suggest that they are luminous, dust-obscured quasars at high redshift. Here we present the JCMT SCUBA-2 850 μm\mu m follow-up observations of 10 Hot DOGs. Four out of ten Hot DOGs have been detected at >3σ>3\sigma level. Based on the IR SED decomposition approach, we derive the IR luminosities of AGN torus and cold dust components. Hot DOGs in our sample are extremely luminous with most of them having LIRtot>1014L⊙L_{\rm IR}^{\rm tot}>10^{14} L_\odot. The torus emissions dominate the total IR energy output. However, the cold dust contribution is still non-negligible, with the fraction of the cold dust contribution to the total IR luminosity (∼8−24%)(\sim 8-24\%) being dependent on the choice of torus model. The derived cold dust temperatures in Hot DOGs are comparable to those in UV bright quasars with similar IR luminosity, but much higher than those in SMGs. Higher dust temperatures in Hot DOGs may be due to the more intense radiation field caused by intense starburst and obscured AGN activities. Fourteen and five submillimeter serendipitous sources in the 10 SCUBA-2 fields around Hot DOGs have been detected at >3σ>3\sigma and >3.5σ>3.5\sigma levels, respectively. By estimating their cumulative number counts, we confirm the previous argument that Hot DOGs lie in dense environments. Our results support the scenario in which Hot DOGs are luminous, dust-obscured quasars lying in dense environments, and being in the transition phase between extreme starburst and UV-bright quasars.Comment: 26 pages, 7 figures, PASP accepte

    LineStacker: A spectral line stacking tool for interferometric data

    Full text link
    LineStacker is a new open access and open source tool for stacking of spectral lines in interferometric data. LineStacker is an ensemble of CASA tasks, and can stack both 3D cubes or already extracted spectra. The algorithm is tested on increasingly complex simulated data sets, mimicking Atacama Large Millimeter/submillimeter Array and Karl G. Jansky Very Large Array observations of [CII] and CO(3-2) emission lines, from z∼7z\sim7 and z∼4z\sim4 galaxies respectively. We find that the algorithm is very robust, successfully retrieving the input parameters of the stacked lines in all cases with an accuracy ≳90\gtrsim90\%. However, we distinguish some specific situations showcasing the intrinsic limitations of the method. Mainly that high uncertainties on the redshifts (Δz>0.01\Delta z > 0.01) can lead to poor signal to noise ratio improvement, due to lines being stacked on shifted central frequencies. Additionally we give an extensive description of the embedded statistical tools included in LineStacker: mainly bootstrapping, rebinning and subsampling. Velocity rebinning {is applied on the data before stacking and} proves necessary when studying line profiles, in order to avoid artificial spectral features in the stack. Subsampling is useful to sort the stacked sources, allowing to find a subsample maximizing the searched parameters, while bootstrapping allows to detect inhomogeneities in the stacked sample. LineStacker is a useful tool for extracting the most from spectral observations of various types.Comment: Resubmitted to MNRAS after referee repor

    ALMA detects molecular gas in the halo of the powerful radio galaxy TXS 0828+193

    Full text link
    Both theoretical and observational results suggest that high-redshift radio galaxies (HzRGs) inhabit overdense regions of the universe and might be the progenitors of local, massive galaxies residing in the centre of galaxy clusters. In this paper we present CO(3-2) line observations of the HzRG TXS 0828+193 (z=2.57) and its environment using the Atacama Large Millimeter/submillimeter Array. In contrast to previous observations, we detect CO emission associated with the HzRG and derive a molecular gas mass of (0.9±0.3)×1010 M⊙(0.9\pm0.3)\times10^{10}\,\rm M_{\odot}. Moreover, we confirm the presence of a previously detected off-source CO emitting region (companion #1), and detect three new potential companions. The molecular gas mass of each companion is comparable to that of the HzRG. Companion #1 is aligned with the axis of the radio jet and has stellar emission detected by Spitzer. Thus this source might be a normal star-forming galaxy or alternatively a result of jet-induced star formation. The newly found CO sources do not have counterparts in any other observing band and could be high-density clouds in the halo of TXS 0828+193 and thus potentially linked to the large-scale filamentary structure of the cosmic web.Comment: Accepted by MNRAS; 9 pages, 4 figure

    A merger in the dusty, z=7.5z=7.5 galaxy A1689-zD1?

    Get PDF
    The gravitationally-lensed galaxy A1689-zD1 is one of the most distant spectroscopically confirmed sources (z=7.5z=7.5). It is the earliest known galaxy where the interstellar medium (ISM) has been detected; dust emission was detected with the Atacama Large Millimetre Array (ALMA). A1689-zD1 is also unusual among high-redshift dust emitters as it is a sub-L* galaxy and is therefore a good prospect for the detection of gaseous ISM in a more typical galaxy at this redshift. We observed A1689-zD1 with ALMA in bands 6 and 7 and with the Green Bank Telescope (GBT) in band QQ. To study the structure of A1689-zD1, we map the mm thermal dust emission and find two spatial components with sizes about 0.4−1.70.4-1.7\,kpc (lensing-corrected). The rough spatial morphology is similar to what is observed in the near-infrared with {\it HST} and points to a perturbed dynamical state, perhaps indicative of a major merger or a disc in early formation. The ALMA photometry is used to constrain the far-infrared spectral energy distribution, yielding a dust temperature (Tdust∼35T_{\rm dust} \sim 35--4545\,K for β=1.5−2\beta = 1.5-2). We do not detect the CO(3-2) line in the GBT data with a 95\% upper limit of 0.3\,mJy observed. We find a slight excess emission in ALMA band~6 at 220.9\,GHz. If this excess is real, it is likely due to emission from the [CII] 158.8\,μ\mum line at z[CII]=7.603z_{\rm [CII]} = 7.603. The stringent upper limits on the [CII]/LFIRL_{\rm FIR} luminosity ratio suggest a [CII] deficit similar to several bright quasars and massive starbursts.Comment: 9 pages, accepted to MNRAS, in pres

    A Search for H2O in the Strongly Lensed QSO MG 0751+2716 at z=3.2

    Get PDF
    We present a search for 183 GHz H_2O(3_13-2_20) emission in the infrared-luminous quasar MG 0751+2716 with the NRAO Very Large Array (VLA). At z=3.200+/-0.001, this water emission feature is redshifted to 43.6 GHz. As opposed to the faint rotational transitions of HCN (the standard high-density tracer at high-z), H_2O(3_13-2_20) is observed with high maser amplification factors in Galactic star-forming regions. It therefore holds the potential to trace high-density star-forming regions in the distant universe. If indeed all star-forming regions in massively star-forming galaxies at z>3 have similar physical properties as e.g. the Orion or W49N molecular cloud cores, the flux ratio between the maser-amplified H_2O(3_13-2_20) and the thermally excited CO(1-0) transitions may be as high as factor of 20 (but has to be corrected by their relative filling factor). MG 0751+2716 is a strong CO(4-3) emitter, and therefore one of the most suitable targets to search for H_2O(3_13-2_20) at cosmological redshifts. Our search resulted in an upper limit in line luminosity of L'(H_2O) < 0.6 x 10^9 K km/s pc^2. Assuming a brightness temperature of T_b(H_2O) ~= 500 K for the maser emission and CO properties from the literature, this translates to a H_2O(3_13-2_20)/CO(4-3) area filling factor of less than 1%. However, this limit is not valid if the H_2O(3_13-2_20) maser emission is quenched, i.e. if the line is only thermally excited. We conclude that, if our results were to hold for other high-z sources, H_2O does not appear to be a more luminous alternative to HCN to detect high-density gas in star-forming environments at high redshift.Comment: 6 pages, 1 figure, to appear in ApJ (accepted May 19, 2006

    First Detection of HCO+ Emission at High Redshift

    Get PDF
    We report the detection of HCO+(1-0) emission towards the Cloverleaf quasar (z=2.56) through observations with the Very Large Array. This is the first detection of ionized molecular gas emission at high redshift (z>2). HCO+ emission is a star formation indicator similar to HCN, tracing dense molecular hydrogen gas (n(H_2) ~= 10^5 cm^{-3}) within star-forming molecular clouds. We derive a lensing-corrected HCO+ line luminosity of L'(HCO+) = 3.5 x 10^9 K km/s pc^2. Combining our new results with CO and HCN measurements from the literature, we find a HCO+/CO luminosity ratio of 0.08 and a HCO+/HCN luminosity ratio of 0.8. These ratios fall within the scatter of the same relationships found for low-z star-forming galaxies. However, a HCO+/HCN luminosity ratio close to unity would not be expected for the Cloverleaf if the recently suggested relation between this ratio and the far-infrared luminosity were to hold. We conclude that a ratio between HCO+ and HCN luminosity close to 1 is likely due to the fact that the emission from both lines is optically thick and thermalized and emerges from dense regions of similar volumes. The CO, HCN and HCO+ luminosities suggest that the Cloverleaf is a composite AGN--starburst system, in agreement with the previous finding that about 20% of the total infrared luminosity in this system results from dust heated by star formation rather than heating by the AGN. We conclude that HCO+ is potentially a good tracer for dense molecular gas at high redshift.Comment: 5 pages, 3 figures, ApJL, in press (accepted May 17, 2006

    CO(1-0) in z ≳ 4 Quasar Host Galaxies: No Evidence for Extended Molecular Gas Reservoirs

    Get PDF
    We present ^(12)CO(J = 1 → 0) observations of the high-redshift quasi-stellar objects (QSOs) BR 1202-0725 (z = 4.69), PSS J2322+1944 (z = 4.12), and APM 08279+5255 (z = 3.91) using the NRAO Green Bank Telescope (GBT) and the MPIfR Effelsberg 100 m telescope. We detect, for the first time, the CO ground-level transition in BR 1202-0725. For PSS J2322+1944 and APM 08279+5255, our observations result in line fluxes that are consistent with previous NRAO Very Large Array (VLA) observations, but they reveal the full line profiles. We report a typical lensing-corrected velocity-integrated intrinsic ^(12)CO(J = 1 → 0) line luminosity of L'_(CO) = 5 × 10^(10) K km s^(-1) pc^2 and a typical total H_2 mass of M(H_2) = 4 × 10^(10) M_☉ for the sources in our sample. The CO/FIR luminosity ratios of these high-z sources follow the same trend as seen for low-z galaxies, leading to a combined solution of log L_(FIR) = (1.39 ± 0.05) log L_(CO) - 1.76. It has previously been suggested that the molecular gas reservoirs in some quasar host galaxies may exhibit luminous, extended ^(12)CO(J = 1 → 0) components that are not observed in the higher J CO transitions. Using the line profiles and the total intensities of our observations and large velocity gradient (LVG) models based on previous results for higher J CO transitions, we derive that emission from all CO transitions is described well by a single gas component in which all molecular gas is concentrated in a compact nuclear region. Thus, our observations and models show no indication of a luminous extended, low surface brightness molecular gas component in any of the high-redshift QSOs in our sample. If such extended components exist, their contribution to the overall luminosity is limited to at most 30%

    Star Formation and Gas Kinematics of Quasar Host Galaxies at z~6: New insights from ALMA

    Full text link
    We present ALMA observations of the [C II] 158 micron fine structure line and dust continuum emission from the host galaxies of five redshift 6 quasars. We also report complementary observations of 250 GHz dust continuum and CO (6-5) line emission from the z=6.00 quasar SDSS J231038.88+185519.7. The ALMA observations were carried out in the extended array at 0.7" resolution. We have detected the line and dust continuum in all five objects. The derived [C II] line luminosities are 1.6x10^{9} to 8.8x10^{9} Lsun and the [C II]-to-FIR luminosity ratios are 3.0-5.6x10^{-4}, which is comparable to the values found in other high-redshift quasar-starburst systems and local ultra-luminous infrared galaxies. The sources are marginally resolved and the intrinsic source sizes (major axis FWHM) are constrained to be 0.3" to 0.6" (i.e., 1.7 to 3.5 kpc) for the [C II] line emission and 0.2" to 0.4" (i.e., 1.2 to 2.3 kpc) for the continuum. These measurements indicate that there is vigorous star formation over the central few kpc in the quasar host galaxies. The ALMA observations also constrain the dynamical properties of the atomic gas in the starburst nuclei. The intensity-weighted velocity maps of three sources show clear velocity gradients. Such velocity gradients are consistent with a rotating, gravitationally bound gas component, although they are not uniquely interpreted as such. Under the simplifying assumption of rotation, the implied dynamical masses within the [C II]-emitting regions are of order 10^{10} to 10^{11} Msun. Given these estimates, the mass ratios between the SMBHs and the spheroidal bulge are an order of magnitude higher than the mean value found in local spheroidal galaxies, which is in agreement with results from previous CO observations of high redshift quasars.Comment: 25 pages, 5 figures, accepted for publication in Ap

    High Sensitivity Array Observations of the z=1.87 Sub-Millimeter Galaxy GOODS 850-3

    Full text link
    We present sensitive phase-referenced VLBI results on the radio continuum emission from the z=1.87 luminous submillimeter galaxy (SMG) GOODS 850-3. The observations were carried out at 1.4 GHz using the High Sensitivity Array (HSA). Our sensitive tapered VLBI image of GOODS 850-3 at 0.47 x 0.34 arcsec (3.9 x 2.9 kpc) resolution shows a marginally resolved continuum structure with a peak flux density of 148 \pm 38 uJy/beam, and a total flux density of 168 \pm 73 uJy, consistent with previous VLA and MERLIN measurements. The derived intrinsic brightness temperature is > 5 \pm 2 x 10^3 K. The radio continuum position of this galaxy coincides with a bright and extended near-infrared source that nearly disappears in the deep HST optical image, indicating a dusty source of nearly 9 kpc in diameter. No continuum emission is detected at the full VLBI resolution (13.2 x 7.2 mas, 111 x 61 pc), with a 4-sigma point source upper limit of 26 uJy/beam, or an upper limit to the intrinsic brightness temperature of 4.7 x 10^5 K. The extent of the observed continuum source at 1.4 GHz and the derived brightness temperature limits are consistent with the radio emission (and thus presumably the far-infrared emission) being powered by a major starburst in GOODS 850-3, with a star formation rate of ~2500 M_sun/yr. Moreover, the absence of any continuum emission at the full resolution of the VLBI observations indicates the lack of a compact radio AGN source in this z=1.87 SMG.Comment: 19 pages, 4 figures, accepted for publication in A
    • …
    corecore